盛世如长春

2.2多孔Si/Si-O-C负极材料的组成、结构与形貌

清清母亲河,自西入贵德。清澈缥碧,名闻天下绝世间。青睐一方热土,徜徉近百公里,山明水秀琪。长空星倒映,旷野藏葱茏。
长把梨,明长城,温泉水。物阜天华,赢得美誉“小江南”。水与生命交响,沙漠变成绿洲,千姿湖绰约。鹤翔金鳞泳,盛世如长春。

2结果与讨论

碳素类材料因具有低且平稳的工作电压、良好的循环性能和高安全性等优点而成为目前商业化锂离子电池中常用的负极材料[1-2]。然而石墨类碳材料的理论比容量仅为372mAh·g-1,因此,为满足锂离子电池高比能量和高比功率的要求,需要探索新型的负极材料[3-5]。硅材料是已知其他材料中具有高比容量的新型负极材料,但是在锂离子嵌入后体积膨胀,结构容易坍塌,从集流体上脱落从而导致较大的不可逆容量[6-7]。针对这一问题,国内外学者开展了大量的研究,如纳米化[8-11]、薄膜化[12-16]、复合化[17-21]等。在上述的解决办法中,通过高温裂解先驱体制备含硅的硅氧碳化物Si-O-C复合负极材料是一条行之有效的方法,在这一方面已进行了大量的研究工作,发现Si-O-C复合负极材料具有较高的可逆容量和较好的循环性能[22-26]。通过改变先驱体的组成和结构,或者通过一定工艺条件可控制Si-O-C复合负极材料中生成单质硅,即制备出Si/Si-O-C负极材料[23-24]。这种材料既具有硅材料容量高的优点,又具有Si-O-C负极材料循环性能好的特点,因此是一种潜在的锂离子电池负极材料。但是,目前国内外对于Si/Si-O-C负极材料方面的研究报道较少。

为研究多孔Si/Si-O-C负极材料形成机理,采用XRD,EDX和FE-SEM对材料及中间产物组成、结构、形貌进行分析。图3是Si-O-C材料、镁金属还原后Si-O-C材料和Si/Si-O-C负极材料的XRD谱图。从图3可以看出,Si-O-C材料为无定型的结构。经镁金属还原后,产物在2θ为28.4°,47.3°和56.1°处出现了分别对应于面的Si的衍射峰,在2θ为36.9°,42.9°和62.3°处出现了对应于MgO的衍射峰,在2θ为22.9°,25.5°,29.7°,32.4°,36.5°,39.7°,52.6°和56.1°处出现了对应于Mg2SiO4的衍射峰,表明材料中除生成单质Si外,还生成MgO和Mg2SiO4等。将还原产物用HCl洗涤后,其XRD谱图对应于单质Si的衍射峰依旧存在,而对应于MgO的衍射峰已经完全消失,对应于Mg2SiO4的衍射峰大部分消失或者减弱。这是因为MgO和Mg2SiO4与HCl反应发生了如式所示的反应,材料中镁金属的含量大大减少,后续EDX分析证明了这一反应。MgO+2HCl→MgCl2+H2OMg2SiO4+4HCl→2MgCl2+SiO2+2H2O为进一步表征材料的组成,采用化学分析和EDX方法对Si-O-C材料、镁金属还原后Si-O-C材料和Si/Si-O-C负极材料进行测试。表1是Si-O-C材料及其空气中氧化后产物的元素含量,图4是镁金属还原后Si-O-C材料和Si/Si-O-C负极材料的EDX图。从表1和图4可以看出,Si-O-C材料中的碳含量较高,根据前述研究[22,25],材料中碳部分以自由碳形式存在,部分以Si-O-C结构存在。将Si-O-C材料于800℃下氧化处理一定时间后,以自由碳形式存在的碳元素被氧化除掉,碳含量大大降低,氧元素和硅元素的含量增加。将氧化后的Si-O-C材料采用金属镁还原后,材料中的镁含量占29.26%,而其他三种元素的含量均有所下降。与还原产物相比,Si/Si-O-C材料中的镁元素含量大大降低,仅为3.34%,而硅元素含量则几乎是原来的2倍。图5是Si-O-C材料、镁金属还原后Si-O-C材料和Si/Si-O-C负极材料的SEM图。从图5可以看出,Si-O-C材料为致密、粒径较大块体,这是因为二乙烯基苯和聚硅氧烷经过交联后形成空间网络结构,交联产物在高温热分解过程中从高分子逐渐转变为无机物,且体积不断收缩,从而形成致密、尺寸较大块体[25-26]。与Si-O-C材料相比,Si-O-C材料在800℃下氧化处理后由镁金属还原所得产物的粒径尺寸大大减小,且致密程度有所降低,如图5所示。将还原产物利用HCl洗涤后得Si/Si-O-C材料,如图5所示,其大块颗粒的表面形成大量孔洞,其颗粒尺寸在50nm~100nm之间,这是因为还原产物MgO和Mg2SiO4与HCl反应生成可溶性MgCl2所致。

是多孔Si/Si-O-C负极材料的充放电曲线。其中,测试电流密度18.6mA·g-1。由于模拟电池以锂片为对电极,放电曲线对应于锂离子和Si/Si-O-C复合负极材料合金化过程,放电容量对应锂离子合金化的容量;充电曲线对应于锂离子脱出过程,充电容量对应可逆脱出的锂离子的容量。放电容量和充电容量的差值则对应了锂离子的损失,即锂离子反应的不可逆容量。从图1可以看出,多孔Si/Si-O-C负极材料的首次和第二次放电容量分别为547.2mAh·g-1,487.4mAh·g-1,首次和第二次充电容量分别为450.7mAh·g-1,422.9mAh·g-1,首次和第二次的库伦效率分别为82.3%,86.8%,多孔Si/Si-O-C负极材料具有较高的库伦效率。根据后续组成与结构分析,Si/Si-O-C材料由Si-O-C结构、单质Si以及少量的Mg2SiO4等组成,结合相关文献[25-26],Si/Si-O-C材料的可逆容量应该与Si-O-C结构和单质Si相关,而不可逆容量可能来自Si-O-C体系中O的贡献。图2是多孔Si/Si-O-C负极材料的循环性能曲线。从图2可以看出,在首次循环中,Si/Si-O-C复合材料的嵌锂容量为547.2mAh·g-1,首次可逆容量为450.7mAh·g-1。从第三个循环开始,多孔Si/Si-O-C负极材料的可逆容量稳定在400mAh·g-1左右,其库伦效率在94%左右,材料具有较好的循环性能,后续的研究表明这与Si/Si-O-C负极材料的结构密不可分,即单质硅分布于多孔的Si-O-C相中,一定程度上可缓解Si在循环过程中产生的体积效应。

2.3多孔Si/Si-O-C负极材料生成过程

应用镁金属化学还原法制备多孔

摘要:以二乙烯基苯和聚硅氧烷为原料经先驱体转化法制备Si-O-C材料,利用镁金属在惰性气氛保护下高温还原制备多孔的Si/Si-O-C负极材料。利用X射线衍射、能谱分析、元素分析和场发射扫描电镜分析多孔Si/Si-O-C负极材料的组成、结构、形貌,从而研究利用镁金属化学还原法制备多孔Si/Si-O-C负极材料的机理。结果表明,镁金属在还原过程中生成MgO和Mg2SiO4等产物,经HCl洗涤后可形成多孔的Si/Si-O-C负极材料。Si/Si-O-C材料中的单质硅分布于多孔的Si-O-C相中,一定程度上可缓解Si在循环过程中产生的体积效应。利用镁金属还原Si-O-C材料制备多孔Si/Si-O-C材料是一种可行的制备方法。

时间:2016-09-26 10:48点击: 次来源:好文学作者:admin评论:- 小 + 大

相关文章